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1.0 INTRODUCTION

TRW Systems Group, under contract to NASA-ARC, is performing a

comprehensive review, analysis and experimental development program

dealing with all aspects of heat pipe technology pertinent to the design

and application of self-controlled, variable conductance heat pipes for

spacecraft thermal control.

Several previous publications [1, 2, 3, 4, 5]* reported on

theoretical and design developments accomplished earlier in the program.

Hardware development and application efforts based on this technology

were also documented [6, 7, 8], as was a computer program for designing

and predicting performance of such systems [9].

This report deals with further fundamental analytical and experi-

mental efforts which were undertaken to 1) provide additional confidence

in existing design tools, 2) generate new design tools, and 3) develop

superior variable conductance heat pipe designs. It presents the results

of five investigations, as follows:

o A series of experiments to test the ability of the TRW

Gaspipe Computer Program to predict temperature profiles

and heat transfer characteristics of gas-controlled heat

pipes (Section 2).

o A series of experiments to test the ability of the TRW

Gaspipe Computer Program to predict diffusion freeze-

out rates under conditions wherein the gas blocked

portion of the condenser falls below the freezing

point of the working fluid (Section 3).

o An analysis of gas aided heat pipe start-up from the

frozen state, leading to a closed form solution useful

in design (Section 4).

* Numbers in brackets refer to references tabulated in Section 7.0.

1
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o An analysis of the transient behavior of hot reservoir

heat pipes leading to a computer program for predicting

both thermally and diffusion dominated transients

(Section 5).

o The development of an improved design for hot reservoir

heat pipes and an experimental program to test the

validity of the transient analysis and computer pro-

gram (Section 6).

2
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2.0 EXPERIMENTAL VERIFICATION OF THE TRW GASPIPE COMPUTER PROGRAM:
TEMPERATURE PROFILES AND HEAT TRANSFER CHARACTERISTICS

The TRW Gaspipe Computer Program for calculating the heat and mass

transfer characteristics of gas-loaded heat pipes has been discussed in

several earlier reports and publications [2, 3, 5, 9]. As originally

written, the program was limited to treating a heat pipe with a single

condenser section exposed to uniform sink conditions. A series of

experiments, performed to verify the program at this point, were docu-

mented in references [2, 3, and 5].

Subsequent modifications to the computer program extended its

capability to deal with two condenser sections with a step change in

the condenser/fin properties or the environment. With these modifi-

cations the program can accommodate cold traps or adiabatic sections

in addition to the primary condenser. Following these modifications,

a more extensive series of experiments were undertaken to test the

program for various operating conditions including step changes in

axial conductance and sink temperature.

2.1 Experimental Approach

As shown on Figure 2-1, the experimental system consisted of an

aluminum-ammonia-neon heat pipe with a wicked external reservoir.

Electrical heat was supplied to a large thermal mass (copper block)

mounted on the evaporator. Condenser heat rejection was by conduction,

convection and radiation through a thin gas layer between the condenser

wall and a cooled copper sleeve. By varying the sleeve temperature or

the gas composition in the gas layer, the effects of sink temperature

and condenser-to-sink coupling could be independently studied.

The design details of the heat pipe are presented in Table 2-1.

Note that there exists a step change in wall thickness from 0.100 to

0.'025 inches in passing from the condenser to the adiabatic section.

This provides a step change in axial conductance of the heat pipe wall,

allowing a test of the program's ability to deal with such situations.

3
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TABLE 2-1

Experimental Heat Pipe Design Details

Working Fluid:

Inert Gas:

Pipe:

Ammoni a

Neon (1.028 X 10-4 +5% lb-moles)

Material
Inside Diameter
Evaporator O.D.
Adiabatic O.D.
Condenser O.D.
Overall Length
Evaporator Length
Adiabatic Length
Condenser Length

= 6061 (T6) Aluminum
= 0.50 in.
= 0.727 in.
= 0.55 in.
= 0.70 in.
= 40.0 in.
= 5.0 in.
= 10.0 in.
= 25.0 in.

Reservoir (wicked):

Material
Internal Volume =
Feedtube

Al uminum
11.4 in3
2.1 in. X 0.25 in. O.D.
X 0.02 in. wall

Wick Structure:
Material:

Description:
Stainless Steel Screen Mesh
Two layers of 150 mesh on inside
surface of heat pipe and reservoir.
One-half of condenser and adiabatic
section filled with 70 mesh screen.

5
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Three series of measurements were made with this system. The
first utilized a constant sink temperature and air in the gas gap.
Four steady-state temperature profiles were recorded for four power
settings which caused the gas front to traverse the condenser and
adiabatic section.

The second series of measurements was similar to the first except
that helium was substituted for air in the gas gap. This increased the
condenser-to-sink coupling by about a factor of five. The last series
of measurements were again made with helium in the gas gap, but the
sink temperature was varied.

2.2 Results and Discussion

The measured data for the total of ten runs are presented in
Table 2-2 and Figures 2-2, 2-3 and 2-4. In Table 2-2, the evaporator,
sink and reservoir temperatures were direct measurements. The heat
rejection - Q represents the input power corrected for evaporator
insulation losses. The molar gas inventory was calculated from pressure
and temperature measurements on the system at ambient temperature and
zero input power. Accuracy limitations on the temperature and pressure
measurements limit the accuracy on the molar gas inventory to about
+5% when calculated in this way. Finally, the condenser coefficient

of heat transfer = hcond was determined using Newton's cooling law,
q" = haT, in conjunction with the measured power, temperature profiles,
and insulation leakage in the adiabatic section. The measured temper-
ature profiles are shown as the data points on Figures 2-2, 2-3 and 2-4.

The TRW Gaspipe Program was then used to produce temperature pro-
file and Q vs. Tev predictions for comparison with the measured data.
Because it was anticipated that the position of the gas front would be
very sensitive to the pipe's gas inventory, and that the +5% accuracy
on this measurement might not be sufficient, the computer predictions
were performed in two steps. First, the program was used for each run
operating on the Q option. This more or less forced the predicted pro-
files into the proper axial position, allowing a clear comparison of

6
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predicted and measured profile shapes.

The temperature profiles predicted in this way are presented in

Figures 2-2, 2-3 and 2-4 as the solid lines. Figure 2-2 shows the

results for constant sink temperature and air in the gas gap. Figure
2-3 shows similar results for helium in the gas gap, and Figure 2-4

shows the results for varying sink temperature with helium in the gas
gap.

In general, the program does an excellent job of predicting the

measured temperature profiles. It correctly accounts for the effect of

condenser-sink coupling, predicting the appreciably sharper fronts for

helium in the gas gap than for air. It correctly predicts a nearly
linear distribution when the front is within the adiabatic section

(Runs A, E, F) as is expected for axial wall conduction. It also

accounts properly for the case where the front crosses the step change

in axial wall conductance at the condenser/adiabatic section transition
(Runs A, E, F), predicting a discontinuity in wall temperature gradient.

The program does, however, have several deficiencies. First, in

all cases it predicts a step change in wall temperature* at the tran-

sition between the adiabatic section and condenser, rather than the
continuous profile which actually occurs. This is due to the approximate

method by which the program handles radial wick resistance (see analysis
in User's Manual [9]). For high conductance wicks (e.g., circumferential

grooves) or low radial heat flux (compare runs C and D with G and H),

this approximation becomes less significant.

A second limitation is that the program is written assuming all

heat transfer along the condenser is uni-directional (from evaporator

to condenser). It does not account for heat transfer to or from the

gas reservoir. For all runs in Figures 2-2 and 2-3, the condenser

sink was below ambient and, in spite of a great deal of insulation,

heat leakage caused the gas reservoir to run hotter than the condenser.

*It is too small to see in Runs A and E.

11
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Consequent conduction along the feed tube caused the end of the con-
denser to rise above sink temperature, and this could not be predicted

by the Gaspipe Program. The effect is most clearly seen in Runs A, B
and C for air in the gas gap. With helium (Runs E, F and G), the higher
condenser-to-sink coupling reduced the magnitude of the condenser

temperature rise.

This effect is also seen on Figure 2-4 which shows the predicted
and measured results from variations in sink temperature. At the low
sink temperature (Run G), the reservoir ran significantly higher than
the sink causing the end of the condenser to operate slightly above Ts.
As the sink temperature was raised towards ambient, the differential

between TR and Ts was reduced and this effect disappeared.

In addition to yielding the temperature profiles of Figures 2-2,
2-3 and 2-4, the Q-option computer runs also yielded calculated molar
gas inventories for each case. The calculated values are presented in
Table 2-3.

TABLE 2-3

Calculated Values of the Molar Gas Inventory

All of the calculated gas inventories fall within 0.998 X 10-4 and 1.023
X 10

-
4 lb-moles; a total variation of only 2.5%. This is extremely

close, and the average of the values in Table 2-3( 1.008 X 10-4 lb-moles)
is probably a more accurate value of the gas inventory than the measured
value of 1.028 X 10

-
4 lb-moles. It deviates from the measurement by

only 2% which is well within the estimated +5% measurement accuracy.

12

Run A B C D E F G H I J

lb-moles 1.005 1.021 1.023 1.010 1.010 0.998 1.017 1.004 1.001 1.001I b-mol es··
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Thus, the second step in the computer predictions was to operate

the program in the -mode, using 1.008 X 10-4 lb-moles as the gas

inventory, in order to obtain predicted heat transfer rates vs. evapor-

ator temperature. The results of these computations are presented in

Table 2-4.*

TABLE 2-4

Comparison of Predicted and Measured Heat Rejection

Rates forlt= 1.008 X 10
-
4 lb-moles

The predicted heat rejection rates obtained in this way

agreement with the measured data, especially in view of

sensitivity to evaporator temperature. Small errors in

the evaporator temperature can lead to large prediction

locating the gas front and calculating Q. This is cleay

Figure 2-5, which presents the data in Table 2-4.

are in excellent

the heat pipes

measurement of

errors in

rly shown on

In Figure 2-5, the solid lines are simply curves faired through

the predicted points (circles). The shaded bands were then drawn to

represent a +1°R variation in Tev. All of the measured data (squares)

for both air and helium in the gas gap fall within the +1°R bands, which

is the estimated experimental accuracy for this measurement.

*Only Runs A through H were treated in this way since these involved
relatively constant sink temperatures.

13
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Run A B C D E F G H

Tev( °R) 545.5 547.0 549.6 559.7 544.7 544.8 548.1 558.1

Qpred (BTU/HR) 4.4 15.0 33.7 75.7 5.1 11.7 143.0 287.1

meas (BTU/HR) 4.8 15.7 32.9 72.8 4.9 17.6 133.6 290.4
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3.0 EXPERIMENTAL VERIFICATION OF THE TRW GASPIPE COMPUTER PROGRAM:
DIFFUSION FREEZEOUT RATES

The results presented in the previous section and in reference

[3] serve to establish the validity of the analysis and Gaspipe Computer

Program insofar as its predictions for temperature profiles and con-

denser heat rejection characteristics. However, it was also shown in

reference [3] that, for heat pipes with materials, dimensions and

operating conditions like those used in these experiments (typical of

spacecraft thermal control devices), axial heat transport by vapor flow

is minimal in the gas blocked region and axial conduction in the wall,

fin and wick dominates. Thus, correctly predicting condenser heat

rejection rates and wall temperature profiles does not imply that the

program also correctly predicts the internal vapor-gas dynamics.

During operation of gas-loaded heat pipes, vapor continually

diffuses into the gas blocked region of the condenser and condenses on

the wick lined walls to be pumped back to the evaporator. However,

in cases where a low sink temperature causes a portion of the gas

blocked zone to operate below the freezing point of the working fluid,

the vapor diffusing into this region condenses and freezes on the

wick (Figure 3-1).

This diffusion freezeout phenomenon can lead to two failure

mechanisms for gas-controlled heat pipes. First, because the frozen

fluid cannot be pumped back to the evaporator, the fluid inventory in

the active portion of the pipe is continually depleted, which can

ultimately lead to dryout of the evaporator wick. Second, the freezing

fluid builds up a plug of solid material which can eventually comple-

tely block the vapor core and cut off communication between the pipe

and the gas reservoir, thus seriously degrading the pipe's temperature

control capability when the heat load is changed.

Thus, although axial mass transport does not appear to significantly

effect the wall temperature profile in the gas blocked region, it is

both finite and important in that it is the mechanism behind the

15
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*-EVAPORATOR---* --ACTIVE -

CONDENSER

*--GAS-BLOCKED CONDENSER- 
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FIGURE 3-1. Schematic Diagram and Temperature Distribution
of a Gas Loaded Heat Pipe in which Diffusion
Freezeout Occurs.
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diffusion freezeout phenomenon.* Also, since the wall temperature pro-

file is fairly independent of axial mass transfer, a thorough test of

the analysis and Gaspipe Computer Program requires a direct measure-

ment of the diffusion freezeout rate itself. This section discusses a
series of such experiments and compares the measured diffusion freeze-

out rates with analytical predictions.

3.1 Experimental Approach

To make the measurements, a heat pipe was pivoted on knife-edges,

and an analytical balance used to detect changes in the moment about

the knife edge axis caused by mass migration within the pipe. The heat

pipe design included a capillary excess fluid reservoir so that the

initial center of mass of the migrating fluid was known. The center

of mass following diffusion freezeout was calculated with the TRW Gas-

pipe Program. Knowing the dimensional change in the center of mass

for the migrating fluid, the diffusion freezeout mass transfer rate
was deduced from the rate of change in moment about the knife edges as
measured with the analytical balance.

3.1.1 Apparatus

The experimental heat pipe is shown schematically in Figure 3-2,

and design details are presented in Table 3-1. Water was selected as
the working fluid because of its relatively high freezing point, which

facilitated the task of providing sub-freezing sink temperatures. The
pipe and screen wicks were manufactured from.monel and nickel, materials

which can be made chemically compatible with water, so as to avoid the
generation of any non-condensible gas over and above that which was

purposefully introduced. The latter was chosen to be neon so that the
molecular weights of the gas and vapor would be closely matched. How-

ever, dissolved nitrogen in the water caused the inert gas composition

*A recent publication by Rohani and Tien [10] suggests there may be
some situations of interest wherein diffusion does significantly
influence the wall temperature profile.

17
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TABLE 3-1

Heat Pipe Design Details

MATERIALS:

Tube: Monel 400. 1/2 in. O.D. X 0.035 wall

End Caps: Monel 400. 1/2 in. rod

Fill Tube: Nickel 200. 1/8 O.D. X .028 wall

Wicking: 80 mesh monel primary wick

60 mesh nickel excess fluid reservoir

Working Fluid: water, 6.67 gms.

Control Gas: 53% neon, 47% nitrogen; 4.3 X 10-8 lb-moles

DIMENSIONS:

Length: 20 1/8 inches (excluding fill tube)

Wick Thickness: 0.022 inches (two layers)

Excess Fluid Reservoir Length: 1.0 inch

Diameter: 0.5 inches

19
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to be 53% neon, 47% nitrogen. The total gas inventory, and hence the

amount of nitrogen in the pipe, was determined from the temperature

profile obtained in a calibration run. This profile was matched by

iteration using the ZGAS option of the Gaspipe Program [9].

The pipe wick structure included a 1.0 inch excess fluid reser-

voir located at the upstream end of the evaporator. An excess fluid

reservoir is a capillary structure placed within the heat pipe to act

as a "sponge." By properly sizing the pores of the reservoir, it will

serve to store any liquid in the pipe which the primary wicks cannot

hold. However, the primary wicks will draw liquid from the reservoir

as needed to maintain their proper saturation level. Hence, the

excess fluid reservoir served as a source of liquid which re-supplied

the primary wick as fluid solidified and accumulated in the sub-

freezing portion of the condenser. The reservoir thus established the

initial location of the frozen fluid accumulated by the diffusion

freezeout process. A more complete discussion of excess fluid reser-

voirs and how to design them can be found in reference [3].

The heat pipe was instrumented with nine bare wire (0.003 in.

diameter) chromel-constantan thermocouples along its length. An

electrical heater for the evaporator was fabricated by close winding

glass-insulated nichrome wire directly over a three inch length of the

pipe surface. The entire unheated portion of the pipe was wrapped

with two layers of 0.002 in. thick aluminized mylar tape (one on each

side of the thermocouple wires) which served both to make the pipe

emissivity uniform and to insulate the bare thermocouple wires from

each other and the pipe wall. The heater wires were wrapped with

Teflon tape to hold them in place. A photograph of the heat pipe, with

its heater and fine wire thermocouples is shown in Figure 3-3.

The test cell is shown pictorially in Figure 3-4, and schematically

in Figure 3-5. It consisted of a controlled atmosphere chamber within

which the heat pipe was horizontally mounted in a cradle pivoted on one

of two sets of knife edges. A tubular phenolic beam was connected to

the evaporator end of the heat pipe, extending out of the test cell

20
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FIGURE 3-3. Photograph of Experimental Heat Pipe 

FIGURE 3-4. Photograph of Experimental Apparatus 
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through a flexible seal where an attached "foot" contacted the
balance pan.

The test cell consisted of three metallic sections thermally

isolated from each other with phenolic bushings. The evaporator and
condenser sections were made of brass. The evaporator section was

insulated with urethane foam, and the condenser section was surrounded
by a similarly insulated cooling jacket maintained at sub-freezing
temperatures with a constant temperature circulator using refrigerated
ethanol. Cooling of the condenser was primarily by conduction, aug-
mented slightly by convection and radiation, from the pipe surface to

the cooled test cell wall through a 0.06 in. annular gas gap.

The third section of the test cell, which contained the knife
edges, was also the location of all electrical feed throughs. All of
the thermocouple leads were routed along the pipe to the vicinity of
the knife edge pivots where a large radius of curvature loop was made
in the fine wires before soldering them to chromel-constantan feed
throughs in the test cell wall. In this way torques from these con-
tacts between the pipe and chamber were minimized. For the same reason,
multi-turn coils of 0.003 inch copper wire were used to connect the
nichrome heater leads to the power feed throughs near the knife edges,
and a very thin flexible rubber membrane was used for the seal where
the phenolic beam extension emerged from the evaporator section of the
test cell. To further eliminate friction effects, the experiment was
operated on a null basis; i.e., mass was continually added or removed
from the balance to compensate for changes in the pipe weight so as to
maintain the reading on the balance (and hence the pipe position) con-
stant. Calibration of this system with precision weights showed it
could detect a mass migration within the pipe of two hundred milli-
grams with better than two percent accuracy.

The test chamber was maintained at a slight over pressure with
dry gas to prevent condensation on the outside of the pipe and the in-
side wall of the cooling jacket. Also, by alternatively using nitrogen
or helium as the test cell gas, it was possible to experiment with

23
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both low and high values for the condenser-to-sink thermal coupling.

The test cell was also provided with two clear plastic windows

to permit visual inspection of the alignment, clearances, and surface

conditions.

Additional experimental equipment included a constant voltage

transformer, an autotransformer, and precision ammeter and voltmeter

in the power circuit; a twelve-channel millivolt recorder and pre-

cision portable potentiometer for temperature measurement; and a

cathetometer for initially leveling the system.

3.1.2 Procedure

The four legs of the test cell were equipped with leveling screws

to permit height and level adjustments. To initially align the system,

the test cell position and knife edges were adjusted such that 1) the

heat pipe was level, 2) the heat pipe condenser and evaporator were

concentric with the cylindrical cooling jacket and evaporator housing,

respectively, and 3) there was a net weight on the balance pan of

approximately 15 grams, including a number of 5 milligram weights

which could later be removed. To run an experiment the following pro-

cedure was employed:

1. The test cell was purged with the selected dry gas

(nitrogen or helium) at a high flow rate for one

hour to assure the absence of air or moisture. The

gas flow rate was then reduced to a slight bleed

in order to minimize convection effects while main-

taining a slight gage pressure in the cell.

2. A tare reading was taken on the balance establishing

the null point for the experiment.

3. The thermocouple recording potentiometer and the

circulating cooling system (at ambient temperature)

were turned on.
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4. Refrigeration (liquid nitrogen) was supplied to the

cooling system, and its control point was set to

yield the desired condenser sink temperature.

5. Power was supplied to the heater and, by monitoring

all temperatures during the cooling transient,

continually adjusted so that the vapor-gas front

was completely developed within the primary con-

denser zone at steady-state conditions. Power

was then held constant throughout the rest of the

experiment.

6. After the initial transient, five-milligram weights,

as required, were added to the balance pan every

5 or 10 minutes so as to maintain the balance

reading at its initial null point.

7. The duration of the experiment varied between 2

and 6 hours depending on the diffusion freezeout

rate.

Recorded data included the time, mass additions or subtractions

from the balance, heater voltage and current, ambient temperature, and

the thermocouple readings. In addition to the nine thermocouples on

the heat pipe, thermocouples were also placed on the wall of the cooling

jacket (to measure the sink temperature) and the wall of the evaporator

housing. All eleven thermocouples were monitored on the recorder.

However, for improved accuracy, the thermocouples measuring the sink

temperature and the pipe temperature in the vicinity of the knife edges

(away from the condenser and evaporator) were also measured with a pre-

cision hand balanced potentiometer. These temperatures were required

inputs to the computer program for predicting the diffusion freezeout

rates.
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3.1.3 Data Reduction

The transient response of the heat pipe to the application of

condenser refrigeration and heater power involved internal mass distri-

bution changes in addition to that associated with diffusion freezeout.

As the condenser cooled below the freezing point, the water in the con-

denser wick froze and expanded. Also, as the wick was placed under

load, liquid was added to the condenser wicking, and meniscus recession

occurred in the evaporator. The net result of these redistributions

of mass was to cause the excess fluid reservoir inventory to initially

increase which increased the pipe weight on the balance and required

mass removal from the balance to maintain its null position. During

this transient period, it was not possible to deduce diffusion freeze-

out rates from the data. However, once steady-state temperature con-

ditions were established, the only mass migration within the pipe was

that due to diffusion freezeout. Diffusion resulted in a continuous

transfer of mass from the excess fluid reservoir to the sub-freezing

portion of the condenser. This mass movement reduced the weight of

the pipe on the balance. By compensating for this reduction through

the periodic addition of 5 milligram weights to the balance pan, a

measure of the diffusion freezeout rate was obtained.

A schematic diagram defining the model for data reduction is shown

in Figure 3-6. The following assumptions are made:

1. Changes in torque due to friction at the knife edges,

thermocouple and heater wires, and the flexible

membrane seal on the balance beam were negligible.

Calibration showed this assumption to be true

within 2 percent for mass transfer on the order

of 200 milligrams.

2. At quasi-steady-state conditions, changes in pipe

weight on the balance were due solely to the tran-

sfer of mass from the excess fluid reservoir to

the sub-freezing portion of the condenser by

diffusion freezeout.
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3. All vapor which diffuses past the point on the con-

denser where the wick surface falls below the freezing
point freezes upon condensing and remains stationary;

the vapor flow provides the sublimation flux induced
by the axial temperature gradient.

With these assumptions, a moment balance about the knife edge

yields the following expressions for the rate of mass addition on the

balance pan to maintain a null reading:

(ZR - ZC) mv |

m_ = F (-

ZB - ZK

(zR - zC) mV = 
z = zF

zF

0-f
0

dm
V

dz
(ZR - z) dz (3-2)

rate of mass addition to the balance

mV axial vapor flow rate

dm
V

- local condensation and freezing rate

dz

z - distance from the end of the condenser to
any point along the pipe

ZC position of the center of mass of the frozen
condensate contributed by diffusion freezeout

F - position at which the wick surface reaches
the freezing point

zR - distance to the mid-point of the excess
fluid reservoir

28
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ZK - distance to the kni-fe edge

Z
B

distance to the point of beam contact
with the balance pan

To obtain analytical predictions for mB, the TRW Gaspipe Computer
Program was used to calculate values of the integral in Eq. (3-2). Two
of the program outputs are profiles of the wick surface temperature and
the local axial mass flow rate of vapor in the heat pipe condenser,
mV. Axial variation of mV within the condenser represents condensation
on the wick surface. Thus, the temperature profile established the
location of the freezing point, ZF,. and the vapor mass flow rate pro-
file both established the value of m

V
I = ZF directly and allowed

the calculation of the local condensation and freezing rate in the

dm
v

region 0 < z < zF; i.e., dz

Analytical predictions of mB obtained in this manner were compared
directly with the experimentally measured results.

3.2 Results

Table 3-2 presents a summary of the experimental measurements.

The rate of mass addition to the balance mB is compared with the com-
puter predicted value. The measured results are seen to range from 64
percent to 99 percent of the computed values.

Figures 3-7 and 3-8 show two typi'cal temperature profiles, one
for a high sink conductance (helium cooled condenser) and the other

for a low sink conductance (nitrogen cooled condenser). Also shown
are the computer predictions based upon the precision potentiometer
readings for evaporator-and sink temperatures.

Figures 3-9 and 3-10 show the balance mass additions versus time
for the runs corresponding to Figures 3-7 and 3-8. One can see that
mB versus time is essentially a straight line for the first 150 mg or

29
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so. It was this line which was used to fix the mB values shown in

Table 3-2.

Table 3-3 shows the freezeout rates converted from raw balance

readings to true mass movement rates using the lever arm distances in

Table 3-2. The distance zB - ZK was an experimentally measured quantity

and the distance zR - zC was a computed quantity as explained in the
previous section. The next section discusses the fact that the true

values of zR - zC cannot differ much from the calculated ones so that
the mRC measured values can stand as experimental results independent

of the computer program validity.

3.3 Discussion

A clearly evident pattern in the data is that the diffusion freeze-

out rate increases with increasing condenser-to-sink conductance

(helium vs. nitrogen in the gas gap). For example, runs 5 and 6 were

made at similar evaporator and sink temperatures, and helium cooling

yielded a freezeout rate more than twice that with nitrogen.

Another pattern which stands out is that a lower sink temperature

yields a higher freezeout rate when the condenser coupling is fixed.

For example, runs 7 and 11 for nitrogen cooling, and runs 8, 9 and 10

for helium cooling may be compared. However, it is important to note

that in Table 3-2 lower sink temperatures are generally accompanied by

lower evaporator temperatures for a given condenser coupling. This was

a consequence of an attempt to set the evaporator temperature (through

the power setting) such that the freezing point was located approximately

mid-way along the condenser. Thus, the relationship between the freeze-

out rate and the sink temperature is partially obscured by the accom-

panying variations in TE.

If one examines Fick's law for diffusion, the trends evident in

the data are readily comprehended. The vapor diffusion flux in the

gas blocked region of the heat pipe is given by:

J -c d (3-3)
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TABLE 3-3

COMPARISON OF MEASURED AND PREDICTED

DIFFUSION FREEZEOUT RATES

(SEE TABLE 3-2 FOR EXPERIMENTAL CONDITIONS)

mRC, MEAS.

mg/hr

53

19

21

45

270

92

56

mRC, PRED.

mg/hr

68.0

29.5

31.1

56.7

272

99.8

72.6

36

RUN

5

6

7

8

9

10

11



1311 1!:6046-RU'00O'

where:

molar diffusion flux of vapor

c - molar density

oCbf - diffusivity of vapor-gas pair

x - mole fraction of vapor

At the freezing point, Eq. (3-3) can be written:

dx T F

J = -cOL diT: T = TF
dT

z = ZF

As mentioned previously, although axial conduction and axial mass

diffusion are coupled phenomena in the vapor-gas front region, the

conduction effect dominates the shape of the axial temperature profile.

Thus, an appropriate expression for the axial temperature gradient can

be obtained by treating the condenser as a long fin, for which the

temperature gradient at zF is given by:

dT
dz Z = ZF

TF- Ts) , (3-5)

condenser-to-sink coefficient of heat transfer

P

zkA

pipe perimeter (circumference)

sum of the axial conductivity area products
for the wall, wick and fluid

Furthermore, from the Clausius-Clapeyron relation:
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-I x / T
E

x = exp RT
E

T (3-6)- l)

dx

T=TF
2RTF

exp RTEexp [j RT

- latent heat of vaporization

TE

R

evaporator vapor temperature

universal gas constant

Substituting Eqs. (3-5) and (3-7) into (3-4) yields the following

approximate expression for the diffusion freezeout rate:

J = -cdK_(TF -Ts)

RTF2
F

exp RT ( 
I -X TE EkAIh

From this expression one sees that a large h on the condenser does

indeed lead to a high diffusion freezeout rate, as does a low sink

temperature, TS. The freezeout rate is also sensitive to TE, parti-

cularly as TE approaches TF. A small drop in TE then causes a large
increase in diffusion freezeout. Note that the co product is in-

sensitive to pressure and hence TE. Finally, the equation shows that
the freezeout rate can be reduced by increasing the axial conductance

of the pipe.

It should also be noted that a convection vapor flux augments the

diffusion flux, J, in an operating heat pipe, and this fact is accounted
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for in the computer program. Thus, the above arguments apply only when

the convection flux is small compared with that by diffusion. Neverthe-

less, the tendency for high h, low Ts, low TE and low k to favor high

freezeout rates would still prevail.

3.3.1 Comparison of Predicted and Measured Results

A number of uncertainties acted to make the agreement between

experiment and theory imperfect. In the experiment itself friction

and/or torques caused by the leads and flexible seal made the effective

sensitivity of the system approximately 4 mg, although the balance it-

self was sensitive to 0.01 mg. This was established with the pipe in-

operative by placing weights on the end of the condenser to simulate

the movement of mass within the pipe, and then adding mass to the balance

until the pipe recovered its original position. The mass of the con-

denser weights determined this way agreed to within 4 mg with that

determined by weighing them on the balance directly.

As another check on systematic weighing errors, experiments were

performed on two sets of knife edges, located at different positions

along the pipe. Consistent results were obtained for both cases.

Other experimental uncertainties were introduced by lack of

absolute constancy in sink temperature and through temperature measure-

ment errors (even though a precision potentiometer was used to measure

TE and TS). There was also some uncertainty in the inert gas composition,

nominally 53% Ne and 47% N2, which makes the diffusivity o-somewhat

uncertain. Also, although radiation coupling in the frozen condenser

was a small part of the total, particularly in the helium cooled runs,

some question about the value of the emissivity on the brass inside

wall of the cooling jacket existed. Further, the alignment of the pipe

in the condenser cooling jacket affected the condenser coupling, since

any eccentricity increases h.

The lengths zK and ZB were of course known with high precision;

(ZB - ZK) was measured to within 0.1 percent. But the lengths zR and
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ZC were more uncertain. Does the excess fluid reservoir desaturate

uniformly as postulated, or does it desaturate from the evaporator end?

The location of zC at first thought may seem highly uncertain, but

actually it is not much more so than zR. The freezing point location,

ZF, was known experimentally within 0.1 inches or so, and zC is located

very nearby independent of the computer results. The vapor pressure

drops so rapidly with wall temperature that all of the vapor is con-

densed and frozen within a few inside diameters of the freezing point.

The computer predicts zF - zC - 0.2 inches for helium coupling and

0.6 inches for nitrogen coupling of the condenser to the sink.

Taking into account all of these experimental uncertainties, it

is estimated that the experimental diffusion freezeout rates reported

in Table 3-3 are accurate to within + 5%, but that the experimental

conditions under which the measurements were taken combine to yield a

+ 15% uncertainty in the predictions.

In several cases, however, the discrepancy between measured and

predicted freezeout rates exceeds fifteen percent. Furthermore, there

seems to be a systematic variation in the ratio of measured to pre-

dicted values from 0.64 at low freezeout rates to 0.99 at high rates.

This is probably due to several approximations in the analytical model

itself, which tend to make its predicted freezeout rates conservative

(too high). Chief among these is the neglect of radial resistance to

vapor diffusion in the one-dimensional model of the vapor/gas dynamics.

Recent analytical work by Rohani and Tien [10] suggests that a one-

dimensional model is quite good for cases in which the vapor-gas front

is sharp and axial diffusion rates are high, but less so when the front

is spread out and diffusion rates are low. In the latter case, radial

resistance to diffusion is significant so that a one-dimensional

solution would tend to over predict freezeout rates. This is consistent

with the experimental data.

In view of the approximations in the program and the experimental

uncertainties, the 64 to 99 percent agreement between measured and pre-

dicted freezeout rates seems reasonable and suggests that the analytical
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model upon which the program is based adequately describes the phenomena

involved.

3.3.2 Design Implications

The application of gas-loaded heat pipes in spacecraft thermal

control often requires that they operate with sub-freezing sink temper-

atures. Under such conditions it is necessary that the heat pipe

engineer consider the diffusion freezeout phenomenon in designing the

pipe.

Diffusion freezeout does not preclude the successful operation

of gas-loaded heat pipes. However, it is necessary to assure that the

freezeout rate is not so high that the evaporator fluid inventory be

depleted to the point of failure before the frozen fluid is recovered.

This occurs when the vapor-gas front moves further out in the condenser

in response to a change in heat load or sink conditions, causing the

previously frozen fluid to the thawed and re-circulated through the

wick system. Thawing will, of course, also occur if the application

involves cyclic sink conditions which rise above the freezing point.

In that case, providing an excess fluid reservoir as was done in the

experimental heat pipe prolongs the pipes ability to operate during a

cold cycle.

The diffusion freezeout rate is a function of many variables

including the working fluid, the non-condensible gas, the condenser-

to-sink conductance, the axial conductance of the pipe (and radiator),

the evaporator temperature, the sink temperature, and the pipe diameter.

Because many of these same variables also influence other aspects of

the heat pipe design (e.g., heat transfer capacity, overall pipe con-

ductance, control sensitivity), it is generally necessary to perform a

series of trade-offs to achieve a design meeting all requirements.

The experimental results reported in this paper suggest that the

TRW Gaspipe Program adequately predicts diffusion freezeout rates for

design purposes. Since it was previously shown that the program also

correctly predicts temperature profiles and heat transfer characteristics,

the authors recommend it for use in designing gas loaded heat pipes.
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4.0 GAS-AIDED START-UP FROM THE FROZEN STATE

There exists a potential problem in starting heat pipes from a

frozen condition in that the evaporator can become depleted of working

fluid before the rest of the heat pipe is thawed, resulting in a tem-
perature overshoot and perhaps a failure to start. Under many circum-

stances this failure mode can be obviated by the inclusion of an

appropriate quantity of non-condensible gas in the pipe. This results

in a progressive, rather than uniform, start-up of the heat pipe which

eliminates the need to thaw the entire pipe before fluid can return to

the evaporator.

From the heat pipe designer's point of view one must know (1)

under what circumstances this start-up scheme will work, and (2) how

much gas should be put into the heat pipe. In an attempt to answer

these questions, an analysis of gas-aided start-up has been performed.

A somewhat simplified, but conservative, model was used for which it

was possible to achieve a closed form solution to the problem. It is

felt that, when verified experimentally, this solution will provide a

satisfactory engineering design criterion for most situations.

4.1 Assumptions and Simplifications in the Model

A Conservative Thawing Criterion:

Freezing stops passage of fluid through the wick. It is difficult

to establish an accurate criterion for when a wick is so blocked. In

an ordinary screen wick, how deeply must the thawing wave penetrate for

liquid to be wicked? It would appear that partial wicking capability

would be recovered in a multilayered wick as soon as a single layer

thawed. In a single layer wick, however, it is not clear at what point

partial wicking would be restored. It is conservative to assume that

raising the pipe wall temperature to the freezing point is necessary,

since the heating occurs via conduction through the wick. This cri-

terion is conservative in the sense that it would lead to overdesign of

evaporator liquid capacity.
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Axial Diffusion:

As discussed in the last section, axial diffusion is generally

small for heat pipes of interest in spacecraft thermal control and

contributes little to axial heat transfer. In such cases it is a
reasonable approximation to assume a sharp front (step change in mole

fraction) between the region which is gas blocked and that which is at
the evaporator temperature.

Axial Conduction:

Before the evaporator temperature reaches the boiling point; that

is, before the saturation temperature becomes that corresponding to a

vapor pressure equal to the total pressure in the condenser (Pvapor +

Pgas), mass transfer occurs by diffusion at only a low rate. During
this time axial conduction acts to preheat the pipe to some degree.

The section of the pipe immediately adjacent to the evaporator becomes

heated so that the subcooling is much reduced. When the "boiling point"

is reached, this portion of the condenser becomes exposed to vapor at

the boiling point and collects condensed and perhaps frozen fluid.
However, due to the' preheating by axial conduction and the heating from

contact with the vapor, this portion rapidly thaws and returns liquid
to the evaporator, due to the capillary pumping head generated when

the evaporator liquid is partly depleted. Subsequent condensation on
this portion of the condenser supplies heat which by virtue of axial

conduction preheats the next section of condenser. During this time,

however, the condensate is returned to the evaporator from the thawed

region.

In view of the preheating phenomenon caused by axial conduction,

it would be conservative to neglect axial conduction. This hypothesis

is put forward only for uniform pipes; a region of low axial conduction

followed by one of high axial conduction as from a connecting conduit

to the condenser presents some difficulties for qualitative arguments
of the type used to advance this hypothesis. In any event the case of
zero axial conduction is clearly a limiting case of interest.
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With these assumptions, the proposed model is a variation of the

"flat front" theory for steady-state operation of gas-loaded heat pipes.

Both axial conduction and axial diffusion have been neglected. However,

in the steady-state case the axial position of the "front" is the same

at all radial locations; i.e., the vapor core, wick and wall. In the

case at hand, the position of the front in the vapor core precedes that

in the wick and wall during start-up.

4.2 Formulation of Equations

The length of condenser exposed to the vapor temperature T
i
of

any given time t is L(t). Neglecting the energy stored in the vapor

and assuming that the condenser wall is virtually isothermal in the

radial direction, because of wick-limited heat transfer, permits L(t)

to be simply related to the evaporator power Q.

L(t)
Q = o Pihi (T

i
- T(z,t)) dz (4-1)

A segment of condenser wall at location z first becomes exposed to Ti
when

z = L(t o) (4-2)

During the subsequent time this segment of wall heats according to

pCG Ac dt hiP.(Ti- T) - hoPo(T-Ts), t > t
o

(z) (4-3)

(T = To, t < to (z))

We define

h hiPiT + h0 PoTs

T: hiPi + hP (4-4)
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and

T = pC Ac/(hiP
i
+ hoPo) (4-5)

Then the solution to Eq. (4-3) for constant T. is

TX - T(z,t) = e

T -T
00 

-[t-t 0o(Z)]/T (4-6)

The interface temperature T
i

is constant, if the condenser pressure
remains essentially constant during a time interval of a few T'S.

From Eq. (4-6) it is possible to find at once the time to thaw, that is,

the time for T(z,t) to reach the freezing point TF from the subcooled
condition T

0

T - TF
e

T - T

tthaw = Ttthaw TA

-tthaw/T

(4-7)

T, - T

To - TF

At t = 0 Eq. (4-1) gives the initial

domain for which to = 0.

value of L
o
, the length of the

Q = PihiLo (T.
i
- T )11i0 1 0

(4-8)

o Pihi -Ti T

For L
o

to be short it is necessary for Ti to be not too close to T0
Therefore, enough gas must be present to have a pressure in the pipe
volume somewhat greater than that of the vapor pressure at the freezing

point.
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During an initial time period from t = 0 to t = tthaw, under our wick

performance criterion, no liquid may be returned to the evaporator.

During this time the liquid level in the wick retreats an amount Sa.

a0 4 Aev pf X = Q tthaw

(4-9)

T - T
o

o Aev Pf T - TF

When the time tthaw is reached, liquid in the amount of 61 is returned.

This liquid multiplied by the latent heat is equal to the integral of

the heat transfer through the wick of length L
o
during the time to

reach tthaw.

61 Aev pf x = hiPiLo thaw (Ti - T) dt

T - T (4-10)

Q1 T TF T
i -

T TF-T
o
/ 1

1l A Pf Tj-T+ T-T0 \ T -T 
T-TF

The ratio of 61 to 60 is the fraction of liquid returned after the

initial thaw.

61 TF-T TF-T

fl ° TT-T + T,-T 0 (; T-T 0 ) (4-11)
T -T
T F

At time equal zero a heating wave proceeds down the tube according to

Eqs. (4-1) and (4-6). The initial velocity V
o

of this wave can be

obtained by differentiating Eq. (4-1) with respect to t.
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0 = P.h. (Ti-To ) Vo - Ph.Lo (TO-To) 1

(4-12)
Tm-T o Lo

Vo Ti-To T

After time tthaw passes, the thawing wave starts traveling down the tube

at exactly the same velocity as the heating wave which preceded it.

Since the velocity of the heating wave decreases monatonically with time,

in a uniform tube, the velocity of the thawing wave is always greater

and is thus always catching up. Thus the amount of working fluid

returned to the evaporator increases monatonically after the initial

waiting period tthaw. This initial period is the critical one.

4.3 Discussion

Since it appears that the initial thawing period is the critical

one, this analysis, which deals only with the start of the thawing pro-

cess, should yield the appropriate criteria for successful frozen

start-ups.

To use this model in the design of heat pipes, one is concerned

principally with Eqs. (4-4), (4-5) and (4-9). For an hypothesized heat

pipe and start-up environment, values for the internal wick conductance

per unit length (hiPi), the external pipe conductance per unit length

(hoPo), and the sink temperature (Ts) are known. From Eq. (4-4) it is

then possible to calculate values of TX for assumed values of Ti greater

than the freezing point of the working fluid (TF). Ti is the temperature
at which the vapor front begins to move out of the evaporator.

The hypothesized heat pipe also yields values for the thermal

mass per unit length of condenser (pCpAc), which includes wick, fluid,
wall, fins, etc. Thus, everything is known from which to calculate the

time constant T with Eq. (4-5).
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Eq. (4-9) is then used to calculate the maximum liquid recession

into the evaporator wick prior to liquid return (6o) for a given start-

up input power (Q). The other parameters; initial temperature (To),

freezing point (TF), evaporator wick area (Aev), fluid density (pf),
latent heat of vaporization (x), and wick porosity (f) are all known

quantities.

The criterion for a successful start is that the initial liquid

return to the evaporator occurs before the evaporator wick depletion

(6o) becomes excessive. The allowable recession, of course, is depen-
dent on the nature of the wick, and requires some engineering judge-

ment. For homogeneous wicks it appears as though total depletion is

permissable. However, in the case of an annular artery, 6o must not
exceed the artery wall thickness.

The procedure outlined will yield the minimum value of T
i
necessary

to achieve a successful start. This is then used to establish the

required non-condensible gas inventory:

: [Pv(Ti) - Pv(To)] Vad + cond (4-13)

RuTo

Clearly there exists a minimum gas inventory for successful start-

up. Raising Lincreases T
i

and lowers 6
o
. Thus, values of N in

excess of the minimum provide a factor of safety. The magnitude of this

factor of safety, however, must be traded off against larger steady-

state condenser blockage which accompanies higher gas inventories. The

length of the steady-state gas blocked region and the possibility of a

long-term diffusion freezeout problem (Ts is below TF for frozen start-

up conditions) can be determined with the TRW Gaspipe Program [9].
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These equations have not yet been studied in great detail para-

metrically. However, it appears that from an engineering point of view,

the initial thaw process in frozen start-ups can generally be handled

through the inclusion of an appropriate quantity of non-condensible gas.

On the other hand, a long period with the evaporator shut-down and

maintained at a temperature above T0 but below Tfp will cause loss of

fluid by diffusion. This mode of drying out the evaporator must also

be examined.
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5.0 TRANSIENT BEHAVIOR OF HOT RESERVOIR HEAT PIPES:
THE TRANPIPE PROGRAM

Gas diffusion plays an important role in the behavior of hot

reservoir variable conductance heat pipes subjected to cyclic or other

temporal changes in heat load or sink conditions [2, 3, 4]. Over-

driving a pipe by imposing so large a heat load or evaporator temper-

ature that vapor enters the reservoir gives rise to diffusion-dominated

transient behavior. One example is when a non-wicked hot reservoir

pipe is overdriven so that vapor diffuses into (and gas out of) the

reservoir with the result that the evaporator temperature rises slowly

with time following the initial transient. A second and more important

example is when an overdriven pipe has the heat load reduced to a value

which is within its normal control range. Unfortunately, instead of

the pipe immediately returning to a proper low value of evaporator

temperature, it continues to hold a high evaporator temperature and

returns to normal operation only slowly as the vapor in the reservoir

diffuses out. Another important example is when changes occur in the

effective sink temperature. Once again, the pipe responds slowly to

such changes as vapor and gas diffuse into or out of the non-wicked

reservoir.

Because hot reservoir heat pipes generally offer better control

than cold reservoir systems [2, 3], it is important that we fully

understand them and have the analytical tools available to adequately

predict their performance. This section presents an analytical model

for hot reservoir heat pipes leading to such a computational tool -

the TRW Transient Gaspipe Program (TRANPIPE).

5.1 Analytical Model

The analytical model employed to predict diffusion dominated

transient heat pipe performance is defined by the following list of

features:

1. A prescribed source heat load Q(t).
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2. A lumped thermal capacity for the source, Cso =

(MCp)so

3. A lumped thermal capacity evaporator of length

Lev connected thermally to the source by thermal

conductance nDOLevhev
.

4. An adiabatic section of length Lad.

5. A finned, radiating and convecting, and axially

conducting condenser of length Lc-

6. An unwicked gas reservoir with lumped volume Vres
connected to the end of the condenser by a tube

of inside diameter Ddif and a length Ldif. The
reservoir is assumed to be at the evaporator

temperature TeV*

5.1.1 Thermostatics

The heat stored within the system is taken to be composed of

the following items:

1. Source heat storage:

Qso (MCp)so Tso = C so Tso (5-1)

2. Evaporator heat storage:

Qev = (MCp)ev Tev =Cev Tev (5-2)

3. Adiabatic section heat storage:

Qad (MCp)ad TV = Cad TV (5-3)

4. Heat stored in condenser:

Qc =~ (LCp)C b g (+ - L(
(MCP)c - (-) Tb +1 - Lb TVI (5-4)c c
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Note that we neglect the heat stored in the vapor in the pipe, on the
one hand, but overstate the heat stored in the condenser, on the other
hand, because most of the heat capacity of the condenser is effective

at a temperature below T
v

due to wick resistance. The quantity nb is
the fraction of the blocked condenser which is nevertheless hot, because
of axial conduction. If there were no axial conduction, we would have

nb = O.

The gas stored within the system is taken to be as follows:

1. When the pipe is overdriven (Lb = 0) all the gas is
contained in the reservoir

res Psat (v)(5-5)
~gas RuTres

2. When the pipe is gas controlled, both the reservoir

and blocked portion of the condenser contain gas

0 gas = Av Lb (1-nb) sat (Tv) sat(Tb) + gas,res (5-6)

where the approximation is made that nb applies to both temperature and
mass concentration profiles.

The mole fraction of non-condensible at the end of the reservoir
is

P sat(Tv) Psat(Tend)
Xend sat (Tv) (5-7)

The temperature distribution along the condenser is assumed to
be such that

tanh (5-8)
n'b B
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Tend = Tb +T - 'b ((5-9)Tend =Tb + cosh1

~2 =(4Tv3+hf)nfPfLb2 (5-10)

KA

The reader will recognize that these results are taken from the class-

ical one-dimensional fin of constant cross-sectional area and perimeter

by linearizing the radiation and introducing an equivalent radiation

heat transfer coefficient hr = 4ca Tv3.

5.1.2 Thermodynamics

Under dynamic conditions the heat flow rates are as follows:

1. Heat flow into and out of source: The power load

Qso imposed upon the source is stored and transmitted

to the evaporator.

dQso
Qso = + UA (To Tv) (5-11)

2. Heat flow from evaporator to pipe: The heat from the

source is stored within the pipe and lost from the un-

blocked portion of the condenser.

UA (Tso Tv) d e + nfPf [Lc-Lb(l-nb)]. (5-12)

[c(aT - 4T) + hf(TW-TS)]

where:

Qpipe Qev + Qad + Qc (5-13)
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The total mole transfer rate of gas and vapor into the reservoir is

as follows:

=A cvAdif = d (Psat(Tv) Vres (5-14)

That for the gas by diffusion and convection into the reservoir is

=AII ee L*diff
igas,res tot end+ (Xend-Xres) ] -e-L*diff (5-15)

CV* > 0

If convection occurs out of the reservoir into the pipe as when the

pipe temperature is falling,

Igses : - Adiv* + (X ) eLdiffOgas,res Adif res res end 1-eL*diff (5-16)

cv* < 0

The quantity L*diff is a measure of the strength of the convection

relative to that of diffusion from the classical solution for flow in

a Stefan tube

L* _ i totlLdiff
diff C~Adiff (5-17)

When L diff is very large, convection completely dominates the mass

transfer into or out of the reservoir, and, when it is small, diffusion

alone prevails.

5.1.3 Numerical Solution

Given a set of parameters describing the state of the system at

time tl,

T(1) T?) T(1) *(1 )so v b gasres

we employ a system of equations giving the change in this state which

occurs during the time from t1 to t2 = t1 + At,
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AT = T(2 ) - T{ )
so so so

AT v = T(2) T(1)

AT = T(2 ) - T1)

A*f =_ G(2) _ (1)
gas,res gas,res gas,res

The system of equations is then used by marching forward a step in

time, finding the new state parameters, and taking another step, etc.

The system of equations employed must be compatible with the thermo-

statics and thermodynamics in the limit as the time step at approaches

zero.

5.1.4 Change of Non-Condensible in the Reservoir

If the pipe is gas controlled, that is, 0gas > tgas, res so
that the condenser contains some gas too, we find first the mass flow

into or out of the reservoir. The total amount of gas and vapor with-

in the reservoir is

Psat (Tv) Vres Psat (Tv) Vres
Otot RT RT

u res u v

when Tres = Tv. The flow rate is then

d' tot Vres dPv Pv dTv
',tot dt Ru l v dt R V er I 2 v v

v

For a vapor pressure law of the form

Pv = exp [A B C i (5-18)
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we find

dPv
dT exp

dPv Pv

v

-[A+ B +

[B ]2C

Substituting, we obtain
dTv

dtttot = Bv. (Tv)

B
v

(Tv)
Psat (Tv) Vres

RuTv
2

U V

Depending upon whether tot is positive or negative, we use Eq. (5-15)

or (5-16) to find7j gas, res If7 Jtot is positive and 7Tgas' res

< 7 gas' then we can write

/g (2) - (1)
gas ,res gas ,res = + Bv (Tv ) Fpos

where *

~F = ~ ~ e~-L diff
Fpos Xend + (Xend Xres) *

-L diff
f is negative and gas, -e

If ;tot is negative and ~)ltgas,res2 ~gas' then we write

9(2)
gas, res gas,res'gas , res

dT

= - B (Tv ) Fneg -At

56

#1T [+v
B +

Tv2

where

(5-19)

I B
TV

2C

+v
v

-1 (5-20)

dT
V

dt
(5-21)

(5-22)

(5-23)
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where. 

-L di ff
neg Xres + (Xres Xend)neg r e e (5-24)

-diffl-e

If t>gas res ' '
l
gas' a situation physically impossible, then we correct

I f gas,res to gas

*X(2) _ () =n -A(1) (5-25)
asres gas,res g gas gasres

5.1.5 Vapor and Source Temperature Changes

Two operating conditions must be distinguished, the gas con-

trolled condition, X gas, res ' P gas' and the overdriven condition

t gas, res >'-gas' In the overdriven condition, Lb = 0, and Eqs.
(5-12) and (5-13) and (5-1) through (5-4) give

dT F4 4 1

so- v pipe dt nf Pf Lc a hf (T -T )

(5-26)
where

Cpipe (MCp)ev + (MCp)ad + (MCp)c

Here the resistance of the wick in causing the condenser to operate

below T
v

has been neglected in accounting for dQc/dt = Qc' But, the

.resistance of the wick may have a significant effect on the heat loss

term, so Tw was written in that term instead of Tv. Let the wick

resistance be defined

D
i

i, Di-26wick (5-27)
R L 

2nLc wi ck
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and, linearizing the radiation so that the combined effect of radiation

and convection can be treated, let

S = nPLc (4oaTv3 + hf) (5-28)

denote a surface thermal conductance and

EoT 4 + h T + 3 EaT 
4

T. = S f s v (5-29)
4 coTv

3
+ hf

an effective cooling temperature.

Then the equations for dTV/dt and dTso/dt are

UA(T T C dTv S (T-T (5-30)
UA (Tso-Tv) = Cpipe t + + (Tv-TC )

dT

Qso= Cso + UA (Tso so ) (5-31)

When these are solved simultaneously for constant Qso and Tc
(1) 0subject to initial conditions Tv = Tv and Tso = T(1) when At = 0,

the result for T(2) - TV(1) is

-m
1

at -m2 At
(2) T() = Cl(l-e ) + C

2
(l-e ) (5-32)

where

m
1

'T .pipe [ tt 1 (5-33)

[" l %JY2 5 2tot 2 [ 2] Tpipe Tso]
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and

T tot T so + (Cpipe + CSO) / Sfp

= 4 Tpipe Tso

Ttot

Tso = CSO/UA

Tpipe = Cpipe / Sfp

Sfp 

(5-35)

(5-36)

(5-37)

(5-38)

(5-39)S / (1 + RS)

C1 = (Qso/Sfp) - (TV - Tc) - C2

C2 = (+1 + +2 - +3) / (ml - m2)

+1 = Qso m1/Sfo

Cso + 1
C2 = (T - Cpipe so pipeLpipe So pi pe

(5-40)

(5-41)

5-42)

(5-43)

3 =(Tso ' Tc)
Cso 1

pipe "so]
(5-44)

The symbol T is used to denote a time constant (hr or sec) and C a
thermal capacity (Btu/°R or joule/°K).
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For the source temperature

To(2) - T(1) = (1 + Rp R ) C1 (1 - e )

-m2 at
+ (1 + Rsrp - R2) C2 (1 - e (5-45)

where the ratios are

RSrp = Sfp/UA (5-46)

R1 = Cpipe ml/UA (5-47)

R2 = Cpipe m2/UA (5-48)

In the gas controlled condition,gasr the effect
gas, res gas,

of a blocked portion of pipe on the heat losses and heat contents must

be accounted for. In this case Eq. (5-11) and (5-12) give

dQ je r L4 4

UA (Tso -T

v

)d-T + nfPfL c 1 - Lc (-lnb)] ·E(Tw -oTs )

+ hp (Tw-T
s
)] (549)

and Eqs. (5-2) through (5-4) together with Eq. (5-13) give

dQvd d[Lb (5-50)
d pip e = C - C t (1-nb)(Tv-Tb) )

As before, we introduce R, S, and T
c

, Eqs. (5-27) - (5-29)

UA (TSo-TV) = Cpipe dt-- Cc t Lc (1-nb)(T-Tb) +

1+RS [
1 L b)](T-T) (5-51)1+RS ' c (1-nb) (bvTc)
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Differentiating Eq. (5-6) gi~ves

d/gasres - A L d L b (1n) (Tv) Psat (Tb)] (5-52)
dt v c [L b at

Consistent with our assumption of similar temperature and mass
concentration profiles which allowed us to employ the same n

b
in Eq.

(5-6) as was used in Eq. (5-4), we approximate Eq. (5-52)

dgasres -. /AvLc\Psat(Tv) Psat(Tb) d rLb b) -)
dt -J Tv - Tb / L

Lb (1-nb)T res (T - Tb) (5-53)

where

p = AL sat (Tv) - sat (Tb) (5-54)
tfp: AvLc - RuTb

Eq. (5-51) then becomes

dT res
UA (T -T b )+C (TfpTso v pi c V- bfp

1S [ Lb 1(5-55)
+RS [ Lcc (1-nb) (Tv- Tb)

Introducing Eqs. (5-15), (5-16), (5-19), (5-22), and (5-24) we obtain

dT B dT
1- +UA (TsoTV) v pipe dt + Cc (TV-Tb)V F dt +

. 1 T-[1 L (1-nb)] (Tv-Tb) (5-56)
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For purposes of numerical calculation the term Cc (Tv-Tb) BvF/%nfp

may be regarded as constant. In that case we regard Eq. (5-56) as

identical in form with Eq. (5-30) with blocked pipe quantities

(Tv-Tb) Bv F (5-57)
Cbp = Cpipe +

Sbp 1+RS -Lb5 (1- _] (5-58)

replacing full pipe values of Cpipe and Sfp respectively. Thus Eqs.

(5-32) through (5-48) can be taken over.

5.1.6 Blocked Condenser Temperature Change

If the sink temperature varies, the temperature of the blocked

portion of the pipe follows it subject to the time lag caused by its

thermal capacity. Neglecting axial conduction in the blocked portion

of the condenser, we can write that the rate of cooling of the blocked

pipe is

Lc d" t= nfPf [(aoTb
4

-aTs4 )
+ hf (Tb-T )] (559)

c dt

An expression which reduces to Eq. (5-59) in the limit as At goes to

zero is

Tb(2) - Tb(l) = (T. - Tb) (l-e b (5-60)

where the blocked pipe time constant is

Tb = Cc lnPfLc [hft (Tb+Ts)(Tb2+Ts2)a].1 (5-61)
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5.1.7 Flow Chart

Figure 5-1 shows a flow chart for the main program. The main

program calls subroutine INPT which reads in the input data. Then the

source, vapor, and condenser temperatures are initialized as is the time

and amount of gas in the reservoir. (The initial values of the temper-

atures are input data, and the reservoir is assumed to be at saturation

conditions corresponding to the total pressure and condenser temperature).
MAIN then calls DUTY to find the input operating conditions at the time

of concern. It than calls DELTA repeatedly. Incremental values are

added to the time, temperatures, and amount of gas in the reservoir.

The heart of the program is subroutine DELTA which is shown

charted in Figures 5-2 and 5-3. For simplicity in programming this

first diffusion-transient heat pipe program, axial conduction was

assumed to have a small effect on the condenser heat loss and gas in-

ventory. Accordingly, nb was taken to be zero. However, Eq. (5-9)
which includes the effect of axial conduction on the reservoir conditions,

was retained.

5.1.8 Start-up

The preceding expressions apply after a gas front has been

established, that is, after the evaporator has been swept clear of gas.

If the pipe at time zero is in a gas-blocked condition so that the
total pressure is greater than the vapor pressure in the evaporator,

and some of the gas inventory is present in the evaporator, then it is

necessary to make use of a special subroutine, START.

During the start-up period the evaporator and adiabatic section

are assumed to be uniform in composition and temperature, and the heat

loss from the evaporator is neglected until the evaporator and adiabatic

section are swept clear of gas. Consistent with this neglect of vapor

transport, the condenser is assumed to receive no heat input from the

evaporator during the start-up period. This neglect leads to over-

estimating the rate of evaporator temperature rise and the rate at
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FIGURE 5-1

FLOW CHART FOR MAIN PROGRAM

CALL INPT

INITIALIZE
t, Ts,s Tv, Tb, gas.res

CHECK FOR
START-UP TRANSIENT

YE , 

AL CALL DT 

CALL START CALL

ADD INCREMENTAL ADD INCR
VALUES TO VALUE

t, Tso, Tv' Tb ' /gas, res t, Tso, Tv,

NO YES NO N
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FIGURE 5-2

FLOW CHART FOR SUBROUTINE DELTA

a) (tgas,res 
<

gas

YES
GO TO 92

COMPUTE AT
v
, ATso

Eqs. (5-32) & (5-45)

NO
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COMPUTE Afgas,res

Eqs. (S-21, 23)
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FIGURE 5-3

FLOW CHART FOR SUBROUTINE DELTA

b) 01gas,res2z7gas

92 CONTINUE

I
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which the condenser temperature falls. The governing equations for

Tb, Tv, and Tso are then Eqs. (5-59), (5-30), and (5-31) with S set

equal to zero. The result for Tb is the same as before, Eq. (5-60).

Eqs. (5-30) and (5-31) yield

(2) (1 ) _ QsoAt
Tso _ Tso C + C so ev

( (1) = Qso At

Tv Tv (Cso + Cev)

- C1 (l-e' m A t)

C1 (l-e-m a
t) Cso

Cev

where

Cev
= so (Cso + CevTso ev

Cev

so ev
Cev Qso 

(TsoTv
)

- (C + Cev)

Ce + Cso
m= C s

ev so

(5-65)

(5-66)

The capacity Cev is that of the evaporator and adiabatic section.

During this start-up transient the total pressure is controlled by the

requirement that

(Ptot-Psat(Tv)) Vev +
RT +

(Ptot-Psat(Tb)) Vc

R Tb + gas,res
(5-67)

where Vev is the volume of both the evaporator and adiabatic section.
The time derivative is

0 = Ve Ptot d ( sat (T V )]
_ R \ T -I r. 

V c -d Ptot d /Psat(Tb) 1

LT b- t -Tbb / b J +
gas ,res

(5-68)
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The start-up transient is probably sufficiently fast so that

diffusion could be neglected. Nevertheless, Eqs. (5-21)-(5-24) are used

to calculate V7gas, res' In order to do so it is necessary to find

= d (Ptot Vres
tot T R T

V
(5-69)

Eqs. (5-68) and (5-69) together with Eqs. (5-21)-(5-24) serve to

establish dPtot/dt

dPtot 1 [ dT dTbl

Ptot Vtot Vev

R T 2 res B v

V

o Pc sat(Tb)Vc b 2C ]
b = 2 2 +T 2 2 I

RTb R T b Tb ub [ b

VcVtot V c

p R Tv R TB

(5-70)

(5-71)

(5-72)

(5-73)

(5-74)Vtot = ev + FVres

where F is given by Eq. (5-22) or (5-24).

When Ptot falls to Psat (Tv) (or Psat (Tv) rises to Ptot) the pro-
gram exits from subroutine START and operates in the normal fashion

described by Eqs. (5-1) to (5-61).

5.2 Discussion

A test case was run for methanol in a 0.4375 inch O.D. pipe. It

was found that a time increment smaller than 0.1 minutes was necessary
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for numerical stability. Since the program was operational, and the
program schedule was tight, no revisions were made. However, in retro-
spect the approach taken was somewhat inefficient for the reason that a

small change in T
v

produces a large change in Lb when the pipe is ,gas
controlled, and this large change in Lb drastically changes dTv/dt. A
more efficient approach might be to expand the quantity

'Lb
Lb _nb)]

appearing in Eq. (5-58) about T
v
= Tvo and to treat the first order

term

-1 (l-nb)b (Tv-Tv )

vlvov

as the quantity which varies with Tv during time interval at, while
the term (T -Tc) is regarded as constant at the value Tvo-Tc during
the interval. In this way new forms of Eqs. (5-32) and (5-45) can
be derived and their stability considerably improved.
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6.0 TRANSIENT BEHAVIOR OF HOT RESERVOIR HEAT PIPES:
EXPERIMENTS

A developmental hot reservoir variable conductance heat pipe was

fabricated for the purpose of testing the TRW Transient Gaspipe Program

(TRANPIPE) and to examine an hypothesized design approach to achieve

rapid recovery from liquid in the reservoir. A number of experiments

were performed to measure transient performance as a function of reser-

voir feedtube geometry, evaporator thermal mass, condenser to sink

thermal coupling and working fluid gas pairs. These measurements were

compared with the analytical predictions for verification of the model.

In addition, the test unit was utilized to study the characteristics

of hot reservoir heat pipes and make improvements, if possible. For

this reason the test profile was quite severe; e.g., sudden high power

start-up, severely overdriving, introduction of liquid into the gas

reservoir, etc. It should be clear, then, that the results presented

in this study are not intended to show the virtues of this type heat pipe

but, to the contrary, are intended to explore the troublesome areas.

6.1 Test Apparatus

The test apparatus consists of the experimental hot reservoir

heat pipe and the associated instrumentation, coolant supply, etc.

6.1.1 Heat Pipe

An assembly drawing of the experimental heat pipe is shown in

Figure 6-1. The heat pipe has a single zone condenser with very low

radial wick resistance. The wick structure consists of circumferential

grooves cut in the stainless steel tube and an axial homogeneous metal
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felt wick diametrically located.

The approach taken was to construct a flexible laboratory type hot

reservoir heat pipe, which could be easily modified in order to test

various configurations. Provision was made for attaching metal blocks to

simulate the thermal mass associated with most cooling applications.

Swagelok* fittings were utilized to allow testing with different feed-

tubes. A thermal resistance could be imposed by the insertion of thin

sheets of teflon between the heat source and the saddle. The external

condenser resistance was obtained by providing a thin gas filled annular
gap of 0.083 inches between the condenser wall and cooling jacket. Heat

transfer across this gap is primarily by conduction and radiation. (Con-

vection effects have been found to be quite small in such a thin gap.)

This external resistance was varied by using different types of gas in

the gap. Helium, for example, has a thermal conductivity on the order of

six times greater than air.

The sizing of the various elements was accomplished with the aid of

the transient computer program itself. Using methanol as the working fluid,

nitrogen as the control gas and a 3/8 inch diameter feedtube between the

gas reservoir and condenser, the program predicted a diffusion-influenced

transient recovery time on the order of three to four hours. Substitution

of a 1/4 inch diameter feedtube would exhibit recovery times approximately

twice as long as those with the 3/8 inch tube. Similarly, substitution of

helium as the control gas in place of nitrogen would yield substantially

more rapid diffusion transients. (The diffusion coefficient for helium/

methanol is on the order of four times greater than nitrogen/methanol.)

In addition, it was found in the preliminary analysis that the temperature

transients were relatively insensitive to the thermal mass once a reason-

able amount was applied. For this reason, tests would be run without an

external thermal mass, and then repeated with a substantial mass attached

to the evaporator. Details of the apparatus are indicated on the working

drawings shown in Appendix A.

*Trademark, Crawford Fitting Company
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The gas reservoir is mounted in a special aluminum saddle outside

of and parallel to the evaporator. As 'shown'in cross section in Figure''

A-4, the saddle is constructed such'that the reservoir is mounted very '

close to the heat input surface, but there is a substantiai 'thickness of

aluminum between the evaporator and the heat input zone. It was hypo-

thesized that this approach would allow the reservoir to operate at a

temperature equal to or slightly above the evaporator; in this mode the

heat pipe could reverse itself with the gas reservoir acting as the eva-

porator leading to rapid recovery from liquid in the reservoir. In

addition, a single layer of fine mesh screen was installed inside the

reservoir to assure uniform liquid distribution over the hottest parts

of the internal surface until depletion of the liquid. This wick was not

continuous with the heat pipe wick; i.e., there was no wick in the feed-

tube.

Some thought was given to the feedtube entrance design. At first

a simple baffle or splash guard was considered, but this would trap liquid

and block the feedtube in a low gravity environment. Therefore, for purposes

of this experiment the feedtube was simply capped off, and forty 0.033 in.

diameter holes were drilled within the last 1/4 inch length (Figure A-1).

These holes are large enough to prevent a significant capillary head due to

liquid "bridging." A more elaborate approach was considered beyond the

scope of this program, but it is felt that further consideration should be

given to the problem.

The fi'll tube was mounted at the end of the reservoir in order to

insert known quantities of liquid in the reservoir and observe the sub-

sequent recovery. The heat pipe and reservoir were soldered in the saddle

by first copper striking and nickel plating the mating surfaces. A coat

of black paint (CAT-A-LAC Flat Black 463-3-8) was applied to the outside

condenser surface and the inside surface of the cooling jacket to provide

a known emissivity ( 40.86) across the annular gas gap.

Two noteworthy problems were encountered during fabrication of the

test assembly. First, because of the differential expansion of aluminum

and stainless steel the saddle warped slightly on cooling during soldering.

This could possibly be improved on future units by better clamping.

Second, it was extremely difficult to bend the feedtubes within the
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specified tolerances. Thus, there is some misalignment in the completed

assembly. These discrepancies have relatively little influence, of

course, on the thermal performance.

A photograph of the completed test unit is shown in Figure 6-2.

6.1.2 Test Setup

A schematic diagram of the test setup is shown in Figure 6-4.

Figure 6-3 is a photograph showing the experimental heat pipe in the test

installation.

Heat input was provided by an Electrofilm 5 watt/in2 strip heater

(Part #112000-212) bonded to the saddle with RTV. This heater was 2 in.

wide by 12 in. long by 0.045 in. thick; it should not exceed 450°F in

temperature. After completion of Run 1 (see procedure) the heater was

removed from the saddle and attached to the thermal mass.

Two Haake* constant temperature circulators were used with appropriate

valves, Figure 6-4, to provide step changes in sink temperature. The heat

sink was either liquid nitrogen or a pumped refrigeration loop. The liquid

nitrogen was simply vented to ambient through the cooling coils of the

constant temperature controllers. Pressurized helium or nitrogen was

connected to the annular condenser gas gap port. A very small over-

pressure was maintained during the testing. The slight bleed flow associated

with leakage around the thermocouple wires, "0-rings", etc., was shown to

have a negligible effect on the overall heat transfer.

A total of twelve copper-constantan thermocouples were attached to

the heat pipe, saddle and thermal mass for continuous readout on a 12-

point temperature recorder. The thermocouple locations are indicated in

Figure 6-5. Additional thermocouples (3A and 13A) were attached to the

adiabatic section and the cooling jacket for checkout with a potlentiometer.

The test apparatus was well insulated throughout the testing. Rubber,

refrigeration type insulation was used on the condenser cooling jacket

and coolant lines. Ceramic fiber insulation was used on the remainder

*Haake Instruments, Inc.
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FIGURE 6-2. Experimental Hot Reservoir Heat Pipe 

FIGURE 6-3. Test I ns ta l l a t i on 
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of the unit. This is a high temperature type insulation, but also has a
relatively low thermal conductivity at room temperature. In addition,

the tests were designed to operate near ambient temperature to minimize

the losses. An empirical insulation conductance of 0.26 Btu/hr-°F was used

in the data reduction. This coefficient was obtained by operating the

coolant at the same temperature as the heat source and measuring the

corresponding heat input.

6.2 Procedure

This section outlines the test plan for the experimental heat pipe.

For clarity, the details of the actual testing are not included here, but

are given with the test results.

Prior to testing, the heat pipe was filled with nitrogen as the con-

trol gas and methanol as the working fluid. The nitrogen was put in first

at a pressure of 1.70 to 1.85 psia at room temperature, which corresponds

to approximately 2.2X10 6 to 2.4X10 6 lb-moles. Then the pipe was filled

with 25.0 + 0.5 cc methanol at room temperature. Because the fill tube

was located on the gas reservoir, as previously explained, it was necessary

to perform an initial startup prior to formal testing in order to purge

liquid from the reservoir after each reprocessing. In addition to this,

it was necessary to maintain a small amount of heat on the fill tube
throughout the testing to prevent condensation in the fill tube. This was

accomplished with a heater wire wrapped around the fill tube. The apparatus

was tilted slightly to prevent the accumulation of excess liquid at the

feedtube entrance.

The test plan was broken into three parts:

a Startup with Liquid in the Gas Reservoir

e Temperature Control Range and Operating Limits

e Transient Performance Runs

An important question to be answered during the initial startup was

whether or not the pipe would operate in reverse when liquid was present

in the gas reservoir. This would enable the reservoir to purge itself

of liquid much more rapidly than by diffusion only. Next, the operating

limits were experimentally verified.
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The transient performance runs consisted of startup, overdriving

and a change in sink temperature within the control range, as indicated

in Figure 6-6.; (The magnitude of the power levels and sink temperatures

were experimentally determined as previously stated). Although an estimated

time scale is shown, no subsequent changes in power or temperature settings

were made until steady-state conditions were reached.

Several variations of the experimental device were utilized to in-

vestigate the transient response characteristics. The sequence of testing

is outlined in Table 6-1. Each test run was compared with the transient

gas pipe program predictions.

6.3 Results

In addition to verification of the analysis, a primary purpose of

the program was to study the performance of hot reservoir heat pipes and

make improvements, if possible. For this reason, the test unit was sub-

jected to quite severe test conditions; e.g., sudden high power startup,

severely overdriving, etc.

One troublesome aspect of hot reservoir heat pipes is the problem

of liquid in the gas reservoir. Startup measurements were made for

situations wherein known quantities of liquid were purposefully introduced

into the reservoir, and the system allowed to equilibrate with and with-

out auxiliary heater power. Although these experiments were actually per-

formed after completion of the formal transient testing, the results are

included in the following section on startup.

The calibration results, necessary for the transient test profile,

are presented next. Finally the transient test results are given for

comparison with analysis.

6.3.1 Startup (Liquid in the Reservoir)

During the initial startup it was observed that the gas reservoir

operated at essentially the same temperature as the evaporator. As

anticipated, the vapor pressure;of liquid present in the gas reservoir

displaced the noncondensible gas into the condenser resulting in a

sigificant temperature'overshoot.' However, it was'not clear whether the

79,



13111-6046-R
U

-00

D
-

uLm

C
 

L
o-4-y)

L
O

o 
-

I--
V

)I 
-

4S.-

ci 
Eau.-r-ILU

Q

C
M

~

0

V)Z

u
z

Z
 

0

I

LUC
-

T
oC
K

-E
 

0- 
-

-
V

 
U

 
-

-
Li.. 

c
C

) 
LL.

to
 

0 
0 

.
0

E
 

Ln 
c 

r- 
E

 
0 

E
0
', 

0
'~

 
0
' 

r-. 33
 

m
N
I
 

(

U
JM

d 
3bnfl1V

'3dW
31 N4NIS

80



13 111-6046-RU-00

TABLE 6-1

TEST SCHEDULE - TRANPIPE

for helium gas

Helium

CONDENSER
COUPLING

Helium

Helium

Nitrogen

Helium

load.

Helium

THERMAL
MASS (LB)*

None

3.3

3.3

3.3

3.3

FEEDTUBE
DIA. (IN.)

0.375

0.375

0.375

0.375

0.375

Reprocess for 0.25 in. diameter feedtube.

Nitrogen Helium 3.3

Aluminum block

Startup and overdrive only

Insert known quantity of liquid in gas reservoir -
startup only

81

RUN NO.

1

2

3**

4***

GAS LOAD

Nitrogen

Nitrogen

Nitrogen

Nitrogen

Reprocess

5

6 0.25

*

**
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liquid was removed from the reservoir by reversed heat pipe action or

diffusion of the vapor through gas in the feedtube.

Because of these observations, further experiments (in addition to

the formal procedure outlined in the previous section) were conducted to

study the behavior during startup. These experiments consisted of intro-

ducing known quantities of liquid into the reservoir and subjecting the

test unit to a step change in power and sink temperature. The test set-

up was modified as follows for this purpose:

e 3cc methanol underfill

e graduated burette attached to fill tube (with valves and

vacuum line)
e auxiliary heater placed on the gas reservoir

The purpose of the initial underfill was to allow several runs

(fluid additions) without reprocessing. This heat pipe is not particularly

sensitive to underfill because a simple homogeneous wick is utilized with-

out arteries and because of the high axial conductance of the aluminum

saddle.

The auxiliary heater was used only to determine whether the saddle

design was valid or not by the application of small amounts of power ( < 2

or 3 watts) to make up for insulation losses, etc. That is, even though

the reservoir was mounted close to the heat input surface relative to the

evaporator as previously discussed, there was some concern that the larger

exposed surface of the reservoir might result in greater heat loss,

causing it to run cool.

The heat pipe configuration for the startup experiments corresponds

to Run 4, Table 6-1. The nitrogen gas load was approximately the same
for each run (2.2 to 2.4X10- 6 lb-moles). Each startup run was conducted

with a step change in evaporator heat input from 0 to 25 watts with a
simultaneous change in sink temperature from room temperature to approxi-

mately 300 F. These conditions correspond to a steady-state full-on con-
denser.

The results shown in Figure 6-7 correspond to the test conditions

given in Table 6-2. A startup without liquid in the reservoir is also
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included for comparison (curve A). An interesting result was that for

liquid amounts in excess of a given value (between 0.5cc and 1.Occ for this

configuration) the temperature overshoot and recovery time is essentially

independent of the amount in the reservoir. This implies that, indeed,

liquid must be purged from the reservoir primarily by heat pipe action,

for diffusion of vapor through gas in the feedtube would be highly time

dependent for various amounts. Moreover, the application of heat to the

gas reservoir (curve E) did not significantly affect the overshoot or re-

covery time. However, the results indicate an initial plateau which causes

a longer recovery time than would be expected. It was thought that this

plateau was caused by droplets condensing along the feedtube itself or

perhaps blockage of the holes at the feedtube entrance with liquid as it

is purged from the reservoir.

For this reason the apparatus was modified again by wrapping a heater

wire around the feedtube and placing a thermocouple on the feedtube bend

at the condenser end. This thermocouple replaced 1 #6 for printout,

Figure 6-5. so that the feedtube temperature could be monitored during

the test. The temperature was maintained 10°F to 20°F below the gas

reservoir. It was observed that the application of feedtube heat did not

improve the recovery time, but in fact caused a greater overshoot in

temperature, and a much longer recovery time (curve F). This result yields

further evidence that some of the holes in the feedtube entrance (Figure

A-1) might have been blocked with liquid. Although heating may have pre-

vented condensation along the feedtube it would also increase the vapor

pressure of working fluid at the condenser entrance leading to the observed
performance.

A discussion of these results is given in the conclusion of the report.

It is apparent that further developmental work is required in the areas

of the feedtube and feedtube entrance design.
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TABLE 6-2

STARTUP WITH LIQUID IN THE RESERVOIR

CURVE
(Figure 4-1)

A

B

C

D

E

F

AMOUNT OF
LIQUID (cc)

None

0.25

1.0

2.0

2.0

1.0

COMMENTS

Run 4

With reservoir
heat (- 2.2 watts)

With feedtube heat

6.3.2 Temperature Control Range and Operating Limits

Before the transient performance tests could be run, it was first

necessary to experimentally establish the minimum and maximum sink temper-

atures and power levels indicated on the test profile in Figure 6-6. The

heat pipe configuration corresponds to Run 1 of the procedure, Table 6-1

for these tests.

6.3.2.1 Full-On Power (Qs)

With a coolant temperature of 30°F the heater power was slowly

increased in increments of 5 watts until the vapor-gas front was positioned

between thermocouples #7 and 8 (Figure 6-5) at the end of the condenser.

When the front was at this location thermocouple #8 was approximately 10° F

above the sink temperature with a vapor temperature of 860F indicating

that the condenser was full-on but not overdriven. The corresponding power

at this full-on condition was 25 watts. This power was used for startup

in the transient testing.

6.3.2.2 Maximum Power (Qmax)

In order to determine the maximum power for overdriving without
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wick failure or excessive temperature rise the power was increased in

increments of 5 watts beyond the full-on value previously recorded. The

power was increased up to 50 watts with a vapor temperature of 1270 F and

on overall temperature drop between the evaporator and condenser of 90F.

On close examination it was seen that the wick may have started to dry out

at 25 watts, but there was no "burn-out" because of the high axial con-

ductance of the aluminum saddle. Thus, the maximum power for overdriving

was set at 50 watts.

6.3.2.3 Nominal Power (Qnom)

It was found that the power could be reduced to less than 1 watt

before the condenser was fully shut-off. Therefore the nominal power was

taken at 12 watts, which is essentially the average of the full-on and
minimum power. This placed the vapor-gas front approximately in the middle

of the condenser with a 30°F sink temperature.

6.3.2.4 Maximum Sink Temperature (Tsmax)

The maximum sink temperature which could be attained without

significantly exceeding the set point temperature at the nominal power of

12 watts was on the order of 500 F. At 560 F, for example, the operating
temperature (vapor temperature) had increased to 96°F.

6.3.2.5 Minimum Sink Temperature (Tsmin)

With a heat input of 12 watts the sink temperature was slowly de-

creased in 5°F increments until a temperature of -20°F was reached. A

lower minimum temperature would cause difficulty in the testing, and the

vapor pressure of the methanol is already negligible (0.07 psia) at this

temperature. The heat pipe operating temperature was 82°F at this con-

dition.

6.3.3 Transient Performance

Once the operating limits were established the test unit was sub-

jected to the transient test profile given in Figure 6-6 for the various
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configurations listed in Table. 6-1. Concurrent with the collection of

data, predictive runs were made with the TRANPIPE computer program.

6.3.3.1 Run 1

The calculated and experimental results of Run No. 1 are shown in

Figure 6-8. The results suggest that the analytical model is valid. Based

on this run, it can be said that it takes about 5 to 6 minutes of CDC 6500

computer time to model a 24 hour real time transient test.

6.3.3.2 Run 2

Figure 6-9 shows the results for the same conditions as in Figure

6-8, but a substantial thermal mass of 3.3 lb. aluminum was added to the

saddle. This represents a more realisitic case in that most cooling

applications involve thermal mass and a thermal resistance between the heat

source and heat pipe evaporator. Although a thin teflon sheet was origi-

nally intended for this resistance, a 70% to 90% copper/silicone slurry was

actually used. The thermal conductance of this mixture was approximately

13.1 Btu/hr-°F.

The primary effect of the increased thermal source mass was a slower

temperature response to step changes in input power, as expected.

6.3.3.3 Run 3

With nitrogen in the gas gap it was possible to put in only 6 watts

heater power without overdriving the pipe in contrast with 25 watts with

helium (Figure 6-10). Similarly, the input power for overdriving was re-

duced to 17 watts for this test. It was not possible to correctly predict

this run without a modification of the computer program to include a heat

transfer conductance to account for insulation losses to the surroundings.

The reason for this is that the input power levels were so low that the

insulation losses were an appreciable percentage of the total input. After

modification of the program, Run Nos. 1 and 2 were recalculated to include

the insulation loss. These latter results are the ones shown in Figures

6-8 and 6-9.
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6.3.3.4 Run 4

Run No. 4 is included in the preceding section on startup with

liquid in the reservoir.

6.3.3.5 Run 5

After reprocessing the test apparatus with helium as the control

gas, Run No. 5 of the test schedule was performed. The observed diffusion

recovery times due to startup, overdriving and changes in sink temperature

were a factor of two or three faster than with nitrogen as the control

gas (Figure 6-11). This is expected because the diffusion coefficient for
helium is on the order of four times greater than nitrogen. It is interesting

to note that whereas the calculated recovery time for nitrogen is slightly

longer than experimental, the computed values for helium are in the opposite

direction. This shows that the model is essentially correct, but there

may be some uncertainty in the diffusion coefficients.

6.3.3.6 Run 6

Next the 3/8 inch OD feedtube was removed and replaced with the 1/4
inch OD feedtube. The pipe was reprocessed with nitrogen and extremely

slow recovery times were observed as shown in Figure 6-12. In fact, it was

decided to terminate the test after completion of the startup and overdrive

because of the long times involved. By simply ratioing the equivalent

feedtube lengths and diameters, one would expect a factor of 1.7 increase

in recovery time.

6.4 Conclusions and Recommendations

The experimental results suggest that the analytical model forming

the basis for the computer program (TRANPIPE) is sufficient for engineering

design purposes. However, it was necessary to include a heat transfer

conductance to account for insulation losses or heat leak to the surroundings.

The need for this modification became apparent in Run 3 when nitrogen was

used in the condenser gas gap in place of helium. Since the input power

levels in Run 3 were quite low the insulation losses were an appreciable

percentage of the total input.
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Two interrelated problem areas emerge from the test program that

are associated with hot reservoir heat pipes:

e prevention of liquid in the reservoir

e rapid recovery and minimum temperature overshoot due to
liquid in the reservoir

Prevention of liquid from entering the gas reservoir is difficult,

for a solution that works in 1-G such as baffles or a check value, is apt
to trap liquid and not work in a low gravity environment. Similarly, a
O-G solution may not prevent liquid from entering the reservoir in ground
handling. Several thoughts pertaining to an appropriate feedtube design
have been identified. A high thermal conductivity material which enters
the condenser through an insulated end cap, for example, would help prevent
condensation inside the feedtube. Since the feedtube is warm, the end
could be covered with a coarse mesh wick that would trap droplets due to
vibration or shock and evaporate them from the outer surface. A bimetallic
element might be arranged to close off the entrance when the heat pipe is
nonoperational. These are, of course, preliminary thoughts and it was con-
cluded that the development of such a device was beyond the scope of this
program and would perhaps involve some O-G testing.

However, a major part of the testing in this program was directed
toward providing rapid recovery and minimum temperature overshoot if liquid
does in fact enter the gas reservoir. It was verified that a rapid liquid
removal rate could be achieved by placing the reservoir outside and parallel
to the evaporator in a mounting saddle which allows it to run at a temperature
equal to or hotterthan the evaporator - "a hair-pin design." Moreover,
when auxiliary heat was applied to the gas reservoir there was little improve-
ment showing that the saddle design was valid. When a thermocouple was
placed on the feedtube near the condenser end, it was observed that with
liquid present in the reservoir a vapor gas front forms near the condenser
entrance to rapidly purge the liquid by reversed heat pipe action rather
than by diffusion through the feedtube. Referring to Figure 6-7, for start-
up with liquid in the reservoir, it was concluded that all the liquid was
removed from the reservoir within the first 1-1/4 hour regardless of the
amount. However, there is an initial plateau in the recovery which is
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probably caused by blockage of the holes at the feedtube entrance with.

liquid as it is purged from the reservoir. ' :;

It is suggested that further testing should include cutting off the

feedtube entrance. This would involve removal of the heat pipe end cap

and rewelding. Much could be learned by installing a glass feedtube. In

addition to this, it is felt that the temperature overshoot due to liquid

in the reservoir could be virtually eliminated by providing a place for the

gas to go instead of completely blocking off the condenser. This could

be accomplished by providing an auxiliary gas reservoir in the adiabatic

section.

Additional analytical work might include modification of the current

program to increase its efficiency. Also, a subroutine for liquid in the

reservoir, with and without an auxiliary gas reservoir, would be desirable.

In summary, useful design information was obtained as a result of

this program. It should be emphasized that additional work remains to be

done. However, it can be said that the "hair-pin design" represents at

least an order of magnitude improvement over an internal reservoir design in

terms of rapid recovery from liquid in the reservoir. Also, it is easier
to fabricate since an internal reservoir leads to a step change in pipe

cross section in order to contain the reservoir.

95:



13111-6046-RU-00

7.0 REFERENCES

1. B. D. Marcus, "Theory and Design of Variable Conductance
Heat Pipe: Hydrodynamics and Heat Transfer," Research
Report No. 1, TRW Report No. 13111-6021-RO-00, April 1971.

2. B. D. Marcus, "Theory and Design of Variable Conductance
Heat Pipes: Control Techniques," Research Report No. 2,
TRW Report No. 13111-6027-R0-00, July 1971.

3. B. D. Marcus, "Theory and Design of Variable Conductance
Heat Pipes," NASA CR-2018, April 1972.

4. B. D. Marcus and G. L. Fleischman, "Steady-State and
Transient Performance of Hot Reservoir Gas-Controlled
Heat Pipes," ASME Paper No. 70-HT/SpT-11, 1970.

5. D. K. Edwards and B. D. Marcus, "Heat and Mass Transfer
in the Vicinity of the Vapor-Gas Front in a Gas Loaded
Heat Pipe," ASME Jour. of Heat Transfer, Vol, 94, Ser. C,
No. 2, pp 155-162, 1972.

6. J. P. Kirkpatrick and B. D. Marcus, "A Variable Conductance
Heat Pipe Flight Experiment," AIAA Paper No. 71-411,
AIAA 6th Thermophysics Conf., 1971.

7. J. P. Kirkpatrick and B. D. Marcus, "A Variable Conductance
Heat Pipe/Radiator for the Lunar Surface Magnetometer,"
AIAA Paper No. 72-271, AIAA 7th Thermophysics Conf., 1972.

8. B. D. Marcus, "Ames Heat Pipe Experiment (AHPE) Experiment
Description Document," NASA CR-114413, January 1972.

9. D. K. Edwards, G. L. Fleischman and B. D. Marcus, "User's
Manual for the TRW Gaspipe Program," NASA CR-114306,
April 1971.

10. A. R. Rohani and C. L. Tien, "Steady Two-Dimensional Heat
and Mass Transfer in the Vapor-Gas Region of a Gas-Loaded
Heat Pipe," ASME Paper No. 72-WA/HT-34, 1972.

96



13111-6046-RU-00

8.0 NOMENCLATURE

A - Area

Ac Cross sectional area
c

C - Thermal capacity

Cp - Specific heat

D - Diameter

S - Diffusivity

J - Molar diffusion flux

K - Thermal conductivity

L - Length

M - Mass

// -M Molar inventory

s}/ - Mole transfer rate

P - Pressure; Perimeter

Q - Thermal energy

Q - Heat transfer rate

R - Wick resistance (thermal); Universal Gas Constant

Ru - Universal gas constant

S - Surface thermal conductance

T - Temperature .
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Tc - Effective cooling temperature

U - Overall coefficient of heat transfer

V - Volume; Velocity

X - Mole fraction

c - Molar density

h - Coefficient of heat transfer

hf - Convective coefficient of heat transfer

k - Thermal conductivity

mi - Rate of mass addition to balance

mRC - Diffusion freezeout rate

mV - Axial vapor mass transfer rate

q" - Heat flux

t - Time

v* - Velocity

x - Mole fraction

z - Axial Position; Distance

60 - Liquid recession in wick
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Wick thickness

Emissivity

Effectiveness (axial)

Fin effectiveness (transverse)

Wick porosity

Latent heat of vaporization

Density

Time constant

Subscripts (E

ad

b

bp

B

c, cor

C

dif

ev, E

end

f

nd

Kcept when defined otherwise):

- Adiabatic Section

- Gas blocked

- Blocked pipe

- Analytical balance

d - Condenser

- Center of mass

- Diffusion (gas feed) tube

- Evaporator

- Reservoir feed tube - condenser interface

- Fluid; Fin
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F - Freezing point

gas - Gas

i - Interface

K - Knife Edges

meas - Measured

o - External, I nitial

pipe - Heat pipe

pred - Predicted

R, res - Reservoir

s, S - Sink

sat - Saturation

so - Source

thaw - Thaw

tot - Total

v - Vapor

w - Wall

wick - Wick

Note: In addition to the nomenclature tabulated here, numerous
intermediate, reference and non-dimensional variables have
been defined and used in the analytical portion of the text.
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APPENDIX A

DRAWINGS

EXPERIMENTAL HOT RESERVOIR HEAT PIPE
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FIGURE A-3. Feedtube

104

i
-I



13111-6046-RU-00

105



13111-6046-R
U

-00

=
4

c
~

~
~

~
.c

C
A

,~
~

~
~

- 
w

 
9 

I
/ 

C
:~~

1 
j c

.
-
.
.i
E
 

'1 
'
 

-
,
,

£
/ 

i

.
-
 

-
-
 

-

£
L
1
~

~
~

~
~

~
~

~
~

~
-1

/ 
' 

,'5
x

C
, 

O
~~~~~~~~~~~~~~~~~~~C

o
t--. 

-

-
-

cr 

Ir 
-I 

U
)i 

U
)

V
E

 
i

O
 

3 
r~~~~~~~~~~~~~~~~~~~'J 

U
 

,

V
~

 
~ 

~ 
-

-4
U

o
~

~
~

~
~

~
~

~
i --

~
~

~
~

~
I 

-

106



13111-6046-R
U

-00

.
.I

~ 2C
)Tac,=

0
-j4.

t

-o
 

-
-5aog

t;
y

I--j

b k--Z
t

'-

4.) u'to3 C00'.0w

!

.
-

,i
-Ir .107

I

.

m
,

'Z
-

to
 

c
"
a
c

1
4
 

4
d 

U
-

[
-"111)~~~~~~~~~~~~~~~~~~~~~~




